Journal of Chromatography, 245 (1982) 359-364

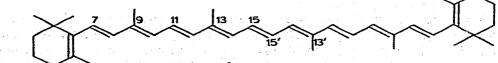
Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

CHROM. 14,989

Note

Separation and determination of $cis/trans-\beta$ -carotenes by high-performance liquid chromatography

KIYOSHI TSUKIDA* and KAYOKO SAIKI


Kobe Women's College of Pharmacy, Motoyama-kitamachi, Kobe 658 (Japan) and

TOMOKO TAKII and YASUSHI KOYAMA

Kwansei Gakuin University, Uegahara, Nishinomiya 662 (Japan) (Received April 27th, 1982)

It has long been recognized that all-*trans*- β -carotene can be converted by various treatments into a quasi-equilibrium mixture of *cis/trans* isomers consisting mainly of mono-*cis* and di-*cis* forms¹. However, owing to their lower vitamin A effects², there have been no further studies on the stereochemistry of these *cis* compounds. Unfortunately, this applies even to the simplest mono-*cis* compounds, except for the central-*cis* isomer, 15-*cis*- β -carotene, which has been synthesized^{3,4}. Recent growing interest in the biochemical and biophysical roles of *cis*-carotenoids⁵ led us to elucidate the structures of the two main geometrical isomers, neo-U and neo-B⁶, as 9-*cis*- and 13-*cis*- β -carotene, respectively⁷. Vecchi *et al.*⁸ independently succeeded in separating several *cis*- β -carotenes by high-performance liquid chromatography (HPLC) on an alumina column using *n*-hexane with a controlled water content as the mobile phase. In spite of their great efforts, however, "hindered" mono-*cis* isomers¹ (7-*cis*- and 11-*cis*- β -carotenes) were not detected in their experiments.

We present here our results on the isolation of the four mono-cis- and five dicis- β -carotenes by HPLC employing a line column at ambient temperature. The thermal and photochemical stereoisomerization of all-trans- β -carotene was also studied.

All-trans- β -carotene

EXPERIMENTAL

Chemicals

All-trans- β -carotene was kindly provided by Dr. Takahashi (Sumitomo Chemical Co., Osaka, Japan). Lime (calcium hydroxide, guaranteed reagent, particle size

0021-9673/82/0000-0000/S02.75 © 1982 Elsevier Scientific Publishing Company

1-10 μ rn) was purchased from Kishida Chemical Co. (Osaka, Japan). All solvents and reagents were of analytical-reagent grade and used without further purification.

Spectra

Ultraviolet-visible (UV-VIS) spectra were recorded in n-hexane solution with a Shimadzu UV 200S instrument.

HPLC

HPLC was performed on a Shimadzu LC2 liquid chromatograph, equipped with a UV-VIS detector, operating at either 450 or 335 nm. The column employed was made of stainless-steel tubing (250 \times 4 mm I.D.) and was slurry-packed using a highpressure packing apparatus. Ultrasonic degassing (5 min) was utilized to obtain a stable suspension of lime (5 g) and tetrachloroethylene (37 ml). The slurry was then packed and rinsed with *n*-hexane (80 ml) from the solvent reservoir, care being taken not to exceed a pressure of 200 kg cm⁻². Injected samples were then eluted with 0.1– 2% acetone in *n*-hexane at a flow rate of 1 ml min⁻¹. The acetone content in the *n*hexane depended on the expected ingredients and the time of analysis required.

Thermal isomerization

All-trans- β -carotene was isomerized by immersing a thin-walled evacuated tube containing the crystals in a bath at 190–200°C for 15 min. The melt was rapidly solidified in ice-water and dissolved in *n*-hexane. HPLC was performed and individual peak areas were estimated after each recorded peak height using 450-nm light, being corrected by the k factors listed in Table I.

Photoisomerization

An appropriate solution (10 ml) containing all-trans- β -carotene (ca. 1.2 mg) and iodine (2% of the weight of the pigment, in *n*-hexane) was irradiated with a fluorescent lamp (20 W, 40 cm long) from a distance of 20 cm for 10 min at room temperature to produce a quasi-equilibrium mixture. After being isomerized, the solution was evaporated to dryness *in vacuo* and the residue was dissolved in *n*-hexane. HPLC was performed as described above.

RESULTS AND DISCUSSION

HPLC separation of cis-*β*-carotenes

A mixture of thermally isomerized products was analysed by HPLC and eighteen different peaks were well resolved on a recording chart. Typical results are shown in Table I and in Figs. 1 and 2. Each component was fractionated, accumulated and then identified by spectroscopic determination; each isomer gave satisfactory UV--vis and ¹H nuclear magnetic resonance (NMR) (in part ¹³C NMR) data, which will be described in detail elsewhere. The components were found to be one irreversible product and seventeen β -carotenes, including unchanged all-*trans*, four mono-*cis*, five di-*cis* and seven unidentified isomers as shown in Table I. Although the 11-*cis* isomer has not been obtained yet, it is interesting that not only the ratio of ε at the λ_{mail} to ε at the *cis*-peak but also the relative adsorption affinity of each mono-*cis* isomer seem to be a function of the molecular shape and hence of the spatial configu-

TABLE I

HPLC OF β -CAROTENE ISOMERS

Peak No.	R _t (min)	Configuration of ß-carotene	Correction factor (k) for peak height at 450 nm
0*	2.2		······································
1 -	4.0		× 1.86
2	4.0	13,15-cis	x 1.50
3	5.0	15-cis	× 1.36
4			× 1.43
5	~		× 1.20
6	6.0	9,13'-cis	× 1.50
7 _. 8	6.7	13- <i>cis</i>	× 1.39
8	7.6	9,15-cis	× 1.38
9	9.0	9,13-cis	× 1.38
11	10.0		× 1.59
12	11.9	7,13'-cis	x 1.45
13	14.0	all-trans (unchanged)	×1
15 -	21.8	9-cis	× 1.09
16			× 1.43
17	32.0	7-cis	× 1.02

Mobile phase, 0.5% acetone in *n*-hexane.

* lodine-catalysed isomerization of the peak 0 gave no evidence of it being a member of the β -carotene set.

TABLE II

UV-VIS CHARACTERISTICS OF MONO-cis-\$CAROTENES IN n-HEXANE

Isomer	HPLC peak No.	UV-VIS			ε at λ_ar	
		λε (nm)	$\varepsilon \times 10^{-4}$	cis peak		ε at cis peak
			. <u>.</u>	λ _{max} (n	$m) \varepsilon \times 10^{-4*}$	
All-trans	13	450	13.90	337	0.80	17.4
Mono-cis:						
7-cis	17	446	13.87	337	0.86	16.1
9-cis	15	445	12.97**	338	1.13**	11.5
13-cis	7	442	10.73**	336	3.88**	2.8
15-cis	3	448	10.32	335	5.46	1.9
Di-cis:						
13,15-cis	2	436	10.43	339	1.49	7.0
9,13-cis	9	439	11.98	335	1.97	6.1
9,13'-cis	6	438	11.18	334	2.03	5.5
9,15-cis	8	441	10.95	334	2.20	5.0
7,13'-cis	12	440	11.17	334	2.81	4.0

* Calculated from the values for all-*trans-\beta*-carotene and the quasi-equilibrium mixture therefrom at a definite temperature.

** Reported values7 were revised.

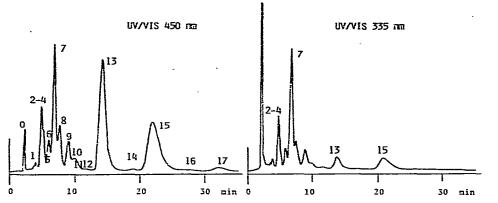
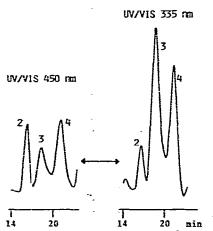
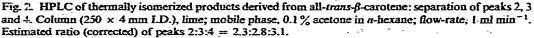




Fig. 1. HPLC of thermally isomerized products derived from all-*trans-\beta*-carotene: simultaneous separation. Column (250 × 4 mm I.D.), lime; mobile phase, 0.5% acetone in *n*-hexane; flow-rate, 1 ml min⁻¹. Peak identification: see Table I.

ration (Tables I and II); thus, the 15-cis isomer has the most bent shape and the least adsorptivity, and the 7-cis isomer vice versa. These isomers were sufficiently stable for recording the spectra in spite of the longer accumulation times. Although five di-cis isomers could be identified in a similar way, seven isomers remained uncertain.

Recently Vecchi *et al.*⁸ achieved the separation of thirteen *cis-β*-carotenes (unchanged all-*trans*, three mono-*cis*, four di-*cis*, one tri-*cis* and four unidentified isomers) by HPLC employing an alumina column (Spherisorb A 5Y) under a "moisture control system". Compared with our procedure, their method takes a longer time for one run (*ca.* 80 min at 20°C) and each retention time (R_T) seems to depend markedly upon the temperature and the moisture content of the mobile phase. The lime-packed column that we used is inexpensive and is durable enough for the present purpose; we have had no serious troubles with this column throughout our experiments. As minor

isomers indicating high R_t values might be completely obscured under a tailing background in the Vecchi *et al.* method, it is apparently a great advantage of our method that good resolution can also be obtained even in such a high R_t region. Previously unknown "sterically hindered" isomers possessing the 7-cis geometry, viz., 7-cis- and 7,13'-cis- β -carotenes, were thus identified for the first time in this work.

Trans→cis isomerization

Typical results for the photochemical and thermal isomerization of all-trans- β carotene are given in Table III. The compositions of the mixtures were determined by estimating the peak area of each isomer recorded on an HPLC chart. 'Hindered' *cis* isomers (7-*cis*- and 7,13'-*cis*- β -carotenes) were found only in the thermal isomerization products, whereas "unhindered" mono-*cis* isomers ["methylated *cis*" (9- and 13-*cis*) and "central *cis*" (15-*cis*)]⁹ were obtained in both the photochemical and thermal isomerization mixtures. Therefore, the thermal isomerization technique may be useful for obtaining some otherwise unavailable steric forms of "sterically hindered" *cis* isomers, although the 11-*cis* isomer has not yet been observed in our experiments.

TABLE III

NOTES

β-Carotene	Content (%)			
	Thermal isomerization*	I2-catalysed photoisomerization in n-hexane**		
All-trans				
(unchanged)	26.7	47		
Mono-cis	46.4	40		
7-cis	1.7			
9-cis	22.4	20		
13-cis	19.5	18.5		
15-cis	2.8	1.5		
Di-cis	19.3	9.8		
13,15-cis	2.3	1.3		
9,13-cis	6.2	4.0		
9,13'-cis	3.3			
9,15-cis	7.5	4.5		
7,13'-cis	Trace			
Unidentified	7.6	3.2		

PERCENTAGE COMPOSITION OF cis/trans ISOMERIZED MIXTURES FROM ALL-trans-β-CAROTENE

* The crystals were heated at 190-200°C for 15 min in an evacuated tube.

** The solution was irradiated with a fluorescent lamp (20 W) from a distance of 20 cm for 10 min at room temperature.

REFERENCES

- 1 L. Zechmeister, Cis-Trans Isomeric Carotenoids, Vitamins A, and Arylpolyenes, Springer-Verlag, Vienna, 1962.
- 2 L. Zechmeister, H. J. Deuel, Jr., H. H. Inhoffen, J. Leemann, S. M. Greenberg and J. Ganguly, Arch. Biochem. Biophys., 36 (1952) 80.
- 3 H. H. Inhoffen, F. Bohlmann, K. Bartram, G. Rummert and H. Pommer, Justus Liebigs Ann. Chem., 570 (1950) 54.
- 4 O. Isler, H. Lindlar, M. Montavon, R. Rüegg and P. Zeller, Helv. Chim. Acta, 39 (1956) 249.
- 5 W. H. Nelson, Amer. Lab., 13 (1981) 94.
- 6 A. Polgár and L. Zechmeister J. Amer. Chem. Soc., 64 (1942) 1856.
- 7 K. Tsukida, K. Saiki and M. Sugiura, J. Nutr. Sci. Vitaminol., 27 (1981) 551.
- 8 M. Vecchi, G. Englert, R. Maurer and V. Meduna, Helv. Chim. Acta, 64 (1981) 2746.
- 9 K. Lunde and L. Zechmeister, J. Amer. Chem. Soc., 77 (1955) 1647.